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First Code Improvement Completed 
Numerical Simulations For Active Tectonic Processes: 
Increasing Interoperability And Performance 

JPL Task Order: 10650 
 

Milestone F – Code Improvement      due date: 6/30/2003 

First code improvement (functional enhancement and speedup). Documented 
source code made publicly available via the Web. 

• PARK on 256 CPU machine with 150,000 elements, 5,000 time steps in 
the same time as the baseline case 

• GeoFEST - links to PYRAMID and runs on a parallel machine - Produce a 
plot of scaled speedup that will show that we are maintaining efficiency as 
the number of processors and problem size increase. Assuming 
availability of a 64 CPU Beowulf, 1,250,000 elements, 1000 timesteps, in 
the same time as the baseline case. 
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Overview 

This milestone report documents Milestone F of the QuakeSim project 
(Numerical Simulations For Active Tectonic Processes: Increasing 
Interoperability And Performance) for NASA’s Earth Science Technology Office, 
Computational Technology Program.  The text of the milestone appears on Page 
1, and requires demonstration of substantially larger problems than Milestone E 
(7/30/02, Table 1) for the now-parallel earthquake codes PARK and GeoFEST.  
Milestone F also requires demonstration of parallel scaling. 
In the next section we describe the large problems that demonstrate code 
improvement for the PARK and GeoFEST code. Then we give details for the 
PARK code (code description, algorithm, numerical method, documentation, 
scaling analysis, and scientific and computational significance), and for the 
GeoFEST code (including the same topics). 
 

Code Machine 
Wallclock Time Processors Date Elements Time 

Steps 

PARK 
Milestone E 
(7/30/02) 

Chapman 
(AMES) 

7.888 Hours 
1 September 18, 

2002 15,000 500 

PARK 
Milestone F 

Chapman 
(AMES) 

7.879 Hours 

 
256 

 
August 15, 

2003 
150,000 5,000 

GeoFEST 
Milestone E 
(7/30/02) 

Solaris 
workstation 

(JPL) 
13.7 Hours 

1 July 30, 2002 55,369 1,000 

GeoFEST 
Milestone F 

Thunderhead 
(GSFC) 

2.8 Hours 
64 September 1, 

2003 1,400,198 1,000 

Table 1: Computer runs demonstrating baseline and Milestone F performance enhancements for 
PARK and GeoFEST applications. 
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Problems Used to Demonstrate Code Improvement 

Table 1 summarizes the results for the improved code demonstration runs.  
Additional runs demonstrating parallel scaling are detailed in Section 4. 
The nature of the code improvements we describe is that problems of much 
larger size than the baseline case are solved in the same time, by use of 
advanced computing technology (Multipole methods for PARK, domain 
partitioning for GeoFEST, and efficient MPI parallel coding for both PARK and 
GeoFEST).  
For the PARK code the problem demonstrating the improvement over baseline 
has geometry shown in Figure 1.  The boundary conditions (appropriate for the 
geographic setting at Parkfield, CA) are the same as for the baseline case, but 
the mesh density is increased from 15,000 to 150,000 rectangular elements, and 
the problem duration is extended from 500 to 5000 time steps.  Traditional 
methods lead to work scaling with the square of the number of elements, and 
linear with time steps.  Our improvements are due to efficient parallel 
implementation and use of a Multipole solution technique that scales much better 
than a law quadratic in element count. 
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B C

A

D  

Figure 1. Views of grid geometry and distribution of
constitutive properties for PARK at three different scales. 

A. Shows the overall geometry. The numbers are
distances in km, both vertically and horizontally from
the origin, which is at the earth’s surface at Middle
Mountain, directly above the hypocenter of actual
Parkfield earthquakes. Boundary conditions of 35
mm/yr slip rate are applied on the light brown areas,
while the blue area is locked with zero slip rate.  

B. Closer view of the grid geometry. The large nearly
solid red area is a region with square elements ~65 m
on a side. Within it is an area at about 10 km deep
and 3 km horizontally that appears solid red at this
magnification, with ~22 m squares and ~7.4 m
squares. 

C. Same area as in (B) showing contours of the constitutive parameter a-b without the grid. Instability can occur in areas
colored brown, the darkness being proportional to the tendency to be unstable.  

D. Magnification of the finest area, showing the ~7.4 m elements and part of the area with ~22 m elements. As in (C) the
color shows the intensity of a-b. 

PARK 
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For GeoFEST, the problem geometry is shown in Figure 2.  Elastic and 
viscoelastic deformation is simulated for 1.4 million finite elements, for a duration 
of 1000 time steps.  The significant increase is in the number of elements, which 
was about 55,000 for the baseline case (also running 1000 time steps).  Note 
that the baseline case was modeled on the 1994 Northridge earthquake, using a 
single fault of 300 square km in a domain of 240 x 240 x 100 km.  The improved 
demonstration case is based on the 1992 Landers event, using three closely 
arranged faults within an 865 square km area in a domain volume area of 1000 x 
1000 x 60 km. 
 

 
 
Figure 2a: Finite element mesh LandersGap64 for GeoFEST milestone F improvement code 
improvement problem. Colors indicate partitioning among processors (limited to 16 processors in 
this image for clarity, actually 64 processors were used).  Partitions cluster near domain center 
due to the high mesh density that is used near the faults.  

GeoFEST
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Figure 2b: Fault segments and surface nodes for LandersGap64 mesh, center region. 

 

Figure 2c:  

GeoFEST simulated 
surface displacement 
from coseismic 
Landers model, 
displayed as InSAR 
fringes (5.2 cm vertical 
displacment is one 
color cycle). 

GeoFEST

GeoFEST 
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Supporting Documents 

The top-level web site for the QuakeSim task is at http://quakesim.jpl.nasa.gov. 
Source code for the three codes may be found at 
http://quakesim.jpl.nasa.gov/download.html.  Files required for the baseline 
cases may be found at http://quakesim.jpl.nasa.gov/milestones.html. 

 

The PARK Code 

PARK is a model for unstable slip on a single earthquake fault.  Because it aims 
to capture the instability, it is designed to represent the slip on a fault at many 
scales, and to capture the developing seismic slip details over an extraordinary 
range of time scales (sub-seconds to decades).  Its simulation of the evolution of 
fault rupture is the most realistic of the tools in QuakeSim for that scale, 
demonstrating the multi-scale approach of this project.  When transformed into 
an efficient parallel simulation, it will be a powerful tool for researchers seeking to 
determine the nature and detectability of earthquake warning signals such as 
surface strains and patterns of microseismicity. 
In a typical application the PARK code will compute the history of slip, slip 
velocity, and stress on a vertical strike-slip fault that results from using state-of-
the-art rate and state frictional constitutive laws on the fault, which is currently 
that for a specific geographic setting at Parkfield, California. The boundary 
conditions are those appropriate for Parkfield, and the distribution of constitutive 
properties on the fault zone are as realistic as our ability to characterize the 
subsurface properties of the fault there allows. The methods developed in solving 
this problem can be generalized to other geologic settings in which the fault 
geometry and the boundary conditions are not so simple and multiple faults are 

Figure 2d:  

GeoFEST simulated 
postseismic surface 
displacement from 
Landers model after 
500 years of 
viscoelastic relaxation 
(at the end of the 
GeoFEST Milestone F 
case of Table 1). Color 
scale of InSAR fringes 
is that of Figure 2c. 

GeoFEST
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involved.  The fault is represented by a rectangular grid with highly variable mesh 
density (Figure 1). 
 
Algorithm 
The main program is a boundary element program that determines the stress on 
every element of the fault surface due to slip on every other element, using a 
Greens function approach. The fault constitutive law is used to determine what 
the slip velocity will be for that stress.  The velocity multiplied by the time step 
gives the slip for calculating the stress in the next time increment. This involves 
the forward time integration of coupled ordinary differential equations.  

Numerical Methods 
Numerically, PARK is a boundary element program that determines the stress on 
every element of the fault surface due to slip on every other element, using a 
Greens function approach. This is the first earthquake simulation code to seek 
and achieve enhanced scalability and speed by employing a Multipole technique 
(documented below).  The Multipole experience gained here will also be 
transferable to the Virtual California code and other boundary element 
simulations. The power of massive parallel computing is required for this problem 
in order to support many small slip patch elements needed to cover the 
nucleation scale that initiates the instability. 
The integration is done with a fifth order Runge-Kutta1 scheme with adaptive step 
size control. Because the time-steps range over ten orders of magnitude, the 
adaptive step-size control is an essential element in the solution.  The time steps 
range depending on whether the fault is slipping very slowly in the interseismic 
period or very fast during an earthquake.  
The main program calls a variety of subroutines and the one of these subroutines 
that calculates the derivatives used in the forward time integration itself calls a 
Fast Multipole library that is suitable for such Green's functions problems. The 
Multipole approach allows a number of computations to scale as N log N rather 
than N2 as would otherwise be the case. This Fast Multipole approach allows 
determination of the degree of grouping of the remote cells based on an 
analytical approximation to the Green’s function. In order to reduce computation 
time it also renumbers the elements so that those that are near in space are also 
near in memory.  
                                      
1 Runge-Kutta is a method for forward integration of differential equations that involves calculating 
derivatives of the functions at the current time and several fractions of potential time-steps in the 
future, appropriately weighting these derivatives estimating the best derivative value to use and 
determining the value of the function at the new time by multiplying that best derivative by the 
appropriate time-step.  The fifth-order Runge Kutta method compares estimates made using two 
different time-steps and, based on this comparison, determines whether a smaller or larger time-
step should be used for the next step.  This allows for adaptive time-stepping which is extremely 
important in problems such as this where the time-steps can vary as much as ten orders of 
magnitude, depending on whether interseismic or a coseismic behavior is involved. 



Milestone F – First Code Improvement 

January 9, 2004 JPL Task Order 10650 Page 10 of 30 

Parallel Implementation 

The flow of the program and the functions of its main routines are found in the file 
Code_Description.doc posted at http://quakesim.jpl.nasa.gov/milestones and 
also http://quakesim.jpl.nasa.gov/documentation. The main program and most of 
its subroutines are written in FORTRAN 90. These programs were converted to 
use MPI to run in parallel for the First Code Improvement Milestone.  
The main program reads inputs and sets up the problem, carries out a time-
stepping loop that integrates the slip and stress field forward in time, and writes a 
summary and closes files at the end.  The dominant task is a function “DERIVS,” 
which uses a fault constituitive relationship to determine slip velocity based on 
local stress, includes effects of shear wave speed and radiation damping, and 
uses the Multipole library to sum the stress contributions of the slip on all fault 
elements to determine the local stress. So, within a single time step the objective 
is to integrate the history using variable-step Runge-Kutta based on the stress-
velocity interactions.  In each time step “DERIVS” is called a total of six times, 
once initially by the main program and five more times by the integrator, to result 
in a fifth-order Runge Kutta integration. “DERIVS” relies on the Multipole code so 
it calls “sumtree” to gather all the contributions to local stress, and then 
determines the local stress and slip temporal derivatives from that. Finally it calls 
“forgettree” to clear the Multipole structure. 
In the parallel version, a single processor reads the geometry and partitions it 
among the remaining processors, sending a portion of the geometry and local 
properties to each one.  Within the loop over time steps “DERIVS” uses the 
Mulipole functions similar to the sequential code, except that “sumtree” is 
designed for parallel use and has internal MPI calls. 
The function computing the stress interactions between fault elements dominates 
the work in the problem. This interaction is made fast and efficient by using a 
proven parallel Fast Multipole library.  Parallel decomposition was added to 
portions of the remaining code in order to make good use of this parallel library. 
We link the Fast Multipole library of Salmon and Warren (Salmon and Warren, 
1997; Warren and Salmon, 1997), which is written in parallel using MPI. 
 
Documentation 
Software documentation is summarized in this report and can be found, in full, in 
the subdirectories of the 1st_Code_Improv_Milestone directory that is accessible 
at the public URL http://www.servogrid.org/slide/GEM/PARK. 
 
For the purpose of verifying that the First Code Improvement Milestone run is as 
described in the “Milestone_Certification_Data” file and repeating the run if 
desired, the compiled files and documentation are available on turing, an SGI 
Origin 3000 at NASA Ames.  This pre-compiled version, on a NASA Ames 
machine, uses two copyrighted numerical recipes subroutines, which are 
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available in the src-bin subdirectory of 
turing:/u/tullis/1st_Code_Improv_Milestone. The subroutines are easily and 
inexpensively available, however they cannot be posted on the public web site. 
Source code and files needed to compile PARK, as well as input files for 
verification of the First Code Improvement run have been placed in unix-
compressed tar files available in two locations.  The first is a website 
(http://www.servogrid.org/slide/GEM/PARK/1st_Code_Improv_Milestone/Downlo
ads) and the second is two of the SGI Origin 3000s at NASA Ames (turing or 
“chapman:/u/tullis/1st_Code_Improv_Milestone/Downloads”).  On the Origin 
3000s, the directory Downloads contains two files, 
“PARK_Package_1st_Improv.tar.Z” and “PARK_Package_NR.tar.Z”.  The files 
are identical except for the two copyrighted numerical recipes subroutines, which 
are only included in the “PARK_Package_NR.tar.Z” version on turing.  Except for 
the presence or absence of these two subroutines, both of these tar files will 
create the Multipole library, the source files for the PARK fault application, and 
the input files for the First Code Improvement Milestone run.  On the website, 
only the “PARK_Package_1st_Improv.tar.Z” file exists, so that the copyrighted 
subroutines are not made public. See either the “README-src-bin.txt” file in the 
src-bin directory or the header for the “park.f” file to learn what needs to be done 
to create these numerical recipes subroutines. 
When the tar files are extracted and decompressed, compiling the libraries and 
the executable will create two files in the t17-7/Objfiles/IRIX64 directory, 
“libsw.a” and “mpmy_seq.o”.  In addition, object files and the executable file 
(“park”) will be created in the src-bin directory.  

Scaling Analysis 

In the directory scaling, found in the same 1st_Code_Improv_Milestone 
directory in which this file is found, there are a number of files that show how the 
job scales both with the number of elements and the number of processors. 
Thirty-six scaling runs were done, involving all the combinations of the number of 
elements used (712, 5,292, 15,000, and 150,000) and number of processors 
used (1, 2, 4, 8, 16, 32, 64, 128, and 256) (Table 2, Figure 3). All these scaling 
runs were run for 100 time steps, whereas the full 150,000 element, 256 
processor First Code Improvement Milestone run was done for 5,000 time steps. 
In the scaling directory is a data table giving the walltime for all 36 scaling runs, 
as well as five plots showing dependence of walltime, speedup, efficiency, and 
overhead on number of elements and number of processors. 
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Table 2: Table 2 shows the problem sizes and run times of PARK on chapman using several 
different numbers of processors.  In order to make this scaling study, the milestone problem was 
reduced to 100 time steps (rather than 5,000) These numbers form the basis for all the plots 
shown in Figure 3. 

 

 

 

nprocs elements   time steps   walltime idn iremain elements/nproc

1 712 100 0:01:13 0 712 712
2 712 100 0:01:01 357 355 356
4 712 100 0:00:48 179 175 178
8 712 100 0:00:41 90 82 89
16 712 100 0:00:41 45 37 45
32 712 100 0:00:48 22 30 22
64 712 100 0:01:11 11 19 11
128 712 100 0:01:39 5 77 6
256 712 100 0:01:45 2 202 3
1 5292 100 0:11:33 0 5,392 5,292
2 5292 100 0:08:58 2,697 2,695 2,646
4 5292 100 0:05:56 1,349 1,345 1,323
8 5292 100 0:03:48 675 667 662
16 5292 100 0:02:07 338 322 331
32 5292 100 0:01:34 169 153 165
64 5292 100 0:01:42 85 37 83
128 5292 100 0:02:28 42 58 41
256 5292 100 0:03:53 21 37 21
1 15000 100 0:32:12 0 15,000 15,000
2 15000 100 0:29:57 7,501 7,499 7,500
4 15000 100 0:15:00 3,751 3,747 3,750
8 15000 100 0:09:51 1,876 1,868 1,875
16 15000 100 0:05:17 938 930 938
32 15000 100 0:02:56 469 461 469
64 15000 100 0:02:18 235 195 234
128 15000 100 0:02:37 118 14 117
256 15000 100 0:04:24 58 210 59
1 150000 100 7:57:47 0 150,000 150,000
2 150000 100 7:41:56 75,001 74,999 75,000
4 150000 100 4:02:22 37,501 37,497 37,500
8 150000 100 2:01:39 18,751 18,743 18,750
16 150000 100 1:17:24 9,376 9,360 9,375
32 150000 100 0:38:39 4,688 4,672 4,688
64 150000 100 0:20:48 2,344 2,328 2,344
128 150000 100 0:12:12 1,172 1,156 1,172
256 150000 100 0:09:27 586 570 586

Data for Scaling Runs for PARK
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Figures 3a, 3b, 3c (below): Several ways of presenting how run time varies with problem size 
and number of processors for PARK on chapman (Table 2). 

 

 

 

 

Figure 3a.   PARK: Walltime. Generally we find that problems complete faster 
when more processors are applied. Very small problems take longer to run on 
many processors, and moderate problems have an optimal machine size that 
should not be exceeded. 

PARK 
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Figure 3b.   PARK: Speedup. While two processors do not always run 
substantially faster than one, the larger problems examined make excellent 
use of additional processors.  Generally one must use at least a few hundred 
elements per processor to obtain reasonable speedup. 

PARK 
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The scaling data show that not much speedup is gained by going from one to two 
processors.  Further work to understand this behavior could allow us nearly a 
factor of two in efficiency in future runs. For the largest job (150,000) elements, 
the efficiency and overhead are nearly constant from 2-8 processors. Efficiency 
falls off between 8 and 16 processors and is constant from 16-32 processors. For 
64, 128 and 256 processors, efficiency falls off gradually. This falloff is 

Figure 3c: PARK: Efficiency. Ideally 16 processors would result in a speedup 
of 16 (for perfect algorithms and instantaneous communication time); here we 
magnify the degree to which we fall short of that. The drop from 1 to 2 
processors may be due to resource contention and will be studied further. 
The remaining portion of the curves shows reasonably high relative efficiency 
for the largest problems, especially for cases where several hundred 
elements reside in each processor. 

PARK
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presumably due to an insufficient number of elements per processor, the 
numbers being 2343, 1171, and 585, respectively, as the plots show. This effect 
is seen even more dramatically for the jobs with a smaller number of elements 
because, as the number of processors increases, the number of elements per 
processor gets so small that a large amount of time is spent communicating 
between processors. The falloff between 8 and 16 processors on the 150,000-
element problem suggests that the optimum number of elements per processor 
may be about 20,000. 

Scientific and Computational Significance 

Achieving the First Code Improvement Milestone is significant because it opens 
the way to run significantly sized problems.  For the first time it presents to the 
scientific community fast parallel codes that allow creating simulations of the 
entire earthquake cycle on a fault in a 3D model that uses the most accurate 
description of fault friction, rate and state friction, and the quasi-dynamic radiation 
damping approximation to full elastodynamics. We now have the potential for 
greatly increasing the number of elements that can be included in the model over 
what could be done in the past.  
Enough elements can now be used that is it possible to represent a reasonably 
sized fault with elements that are small enough that they can properly represent 
the behavior of a continuum. Larger numbers of elements also allow occurrence 
of earthquakes with a large range of sizes in the simulation. It will now be 
possible to simulate small earthquakes occurring in isolation and ones that 
cascade or grow into larger ones.   It is currently not understood what causes 
small earthquakes to grow into large ones or stop at small events.  Hence, these 
new simulations should be key to understanding earthquake rupture processes. 
This could help gain an understanding of whether patterns of microseismicity 
might be used to help predict earthquakes. The attainment of this milestone not 
only represents an advance in our computational ability to simulate earthquakes, 
but will allow us to understand the earthquake process better by creating 
simulated data sets that can be compared with data on real earthquakes. The 
attainment of the next milestone (Second Code Improvement) will involve 
increasing the efficiency of the code in other ways, now that the parallel 
implementation has been achieved, and this will allow even larger and more 
realistic simulations to be run. 
Computationally, we note this is the first simulation of an earthquake fault using 
the Fast Multipole technique, using a library originally developed for 
astrophysical, gravitationally-interacting bodies.  As shown in Figure 4, this 
technique leads to enormous savings over traditional full-interaction methods. 
Note that the Multipole method results in an improvement in scaling on a single 
processor, and that the performance is continually increased by employing 
additional processors (for sufficiently large problems). 
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Figure 4: PARK: Scaling of time required per time step using traditional N squared full interaction 
method, the Multipole method on one processor, and the parallel improvement found with 
additional processors (to 256).  
 

Simulation details 

All of the necessary material that describes the First Code Improvement 
Milestone can be found within the appropriately named subdirectories under the 
1st_Code_Improv_Milestone directory in the public server at 
http://www.servogrid.org/slide/GEM/PARK (or on NASA machines turing or 
chapman).  Instructions are included that will allow duplication of the results.  
Included in the in and out directories are all the materials from the First Code 
Improvement Milestone run with 150,000 elements and 256 processors for 5,000 
time steps. For code testing purposes on one's own system it is useful to set the 
number of time steps in the prk.dat.150003 file to a smaller number than 5,000 
for the initial run; even 2 would be reasonable for the first run. 

PARK
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The materials in these directories include: 
“Milestone_Certification_Data.txt” - a file that gives the time required for the First 
Code Improvement run and describes various parameters of the run. 
“README-setting_up_input_files.txt” - a file that tells one how to understand the 
input files including an explanation of how the elements are created                           
from the input files. 
README-Compile.txt - a file that tells how to create both the Multipole library 
and the PARK fault files using the appropriate Makefiles. 
in - a directory that contains the input files that were used in the First Code 
Improvement run. 
out - a directory that contains the output files that were generated in the First 
Code Improvement run. 
src-bin - a directory that contains the PARK and related fault application files 
used in the First Code Improvement run. The versions of this directory on turing 
and chapman also have the object files and executable binary file (named 
“park”). 
Chapman is described at http://www.nas.nasa.gov/About/Profile/resources.html. 
Particulars relevent to this run (current as of November 2003) are:  

Chapman, an SGI Origin 3000, is currently the only 1,024-processor 
single-image, shared-memory system in existence, with one operating 
system and a single address space. Chapman will become a major 
component of the IPG (Information Power Grid), and is currently being 
used to demonstrate that applications can scale to 1,024 processors on 
this machine. The system has 128 gigabytes of main memory, and 2 
terabytes of FC Raid disk storage. 
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Code Description – GeoFEST 

GeoFEST simulates stress evolution, fault slip and plastic/elastic processes in 
realistic materials. The products of such simulations are synthetic observable 
time-dependent surface deformation on scales from days to decades. Scientific 
applications of the code include the modeling of static and transient co- and post-
seismic Earth deformation, Earth response to glacial, atmospheric and 
hydrological loading, and other scenarios involving the bulk deformation of 
geologic media. 
Diverse types of synthetic observations will enable a wide range of data 
assimilation and inversion techniques for ferreting out subsurface structure and 
stress history.  In the short term, such a tool allows rigorous comparisons of 
competing models for interseismic stress evolution, and the sequential GeoFEST 
system is being used for this at JPL and UC Davis.  Parallel implementation is 
required to go from local, single-event models to regional models that cover 
many earthquake events and cycles.  
GeoFEST uses stress-displacement finite elements to model stress and flow in a 
realistic model of the Earth's crust and upper mantle in a complex region such as 
the Los Angeles Basin. The model includes stress and strain due to the elastic 
response to an earthquake event in the region of the slipping fault, the time-
dependent viscoelastic relaxation, and the net effects from a series of 
earthquakes. The physical domain may be two or three dimensional and may 
contain heterogeneous materials and an arbitrary network of faults. The physics 
models supported by the code include isotropic linear elasticity and both 
Newtonian and power-law viscoelasticity via implicit/explicit quasi-static time 
stepping. In addition to triangular, quadrilateral, tetrahedral and hexahedral 
continuum elements, the program supports split-node faulting, body forces and 
surface tractions. 

 
Algorithm 
GeoFEST reads in a tetrahedral mesh and information on boundary conditions, 
faulting events and variations in time.  The equilibrium conditions are computed 
based on solution of the elastostatic equations through the finite element method.  
Then viscoelastic evolution of the stress field is computed based on an implicit 
technique applied on a series of time steps. 

 

Numerical Methods 

Details are found in the GeoFEST User’s Guide, which is posted at: 
http://www.openchannelsoftware.org/projects/GeoFEST and  
http://www-aig.jpl.nasa.gov/public/dus/quakesim/GeoFEST_User_Guide.pdf.  
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In brief, the elastostatic solution is computed using standard elastostatic finite 
elements, as found in (e.g.) Hughes.  The sparse positive definite system of 
equations is solved by the Diagonally Preconditioned Conjugate Gradient 
(DPCG) method. 
For the viscoelastic time steps we form a modified stiffness matrix and right-hand 
side terms according to the method of Hughes and Taylor (1978), which again 
results in a positive definite system. Each time-step solution is found by the same 
DPCG function. 
Slip on faults is accommodated by a split node technique (Melosh and Raefsky, 
1981) that modifies the right-hand side of the matrix system at nodes local to the 
fault that slips. 

Parallel Implementation 

We have linked GeoFEST to the Pyramid library 
(http://www.openchannelsoftware.org/projects/Pyramid) and rely on Pyramid 
functions for parallel domain partitioning and communication between nodes. 
This results in one change in processing, and some changes in the code. 
There is now a preprocessing step before GeoFEST is run on parallel machines.  
This is a command-line invocation of an application “gfmeshparse”, which derives 
a full connectivity description from the GeoFEST input file for PYRAMID’s use.  
Note that in the GeoFEST-4.3P download, this application is called “meshgen.” 
Changes to GeoFEST are chiefly in the use of PYRAMID.  PYRAMID is used for 
partition information, resulting in each processor having a compact segment of 
the finite element domain for its formation of the local part of the stiffness matrix 
and solution.  PYRAMID is also used for combining these local solution estimates 
and conjugate gradient vectors at each iteration within of each time step using 
the “globalize” function that combines the local information and ensures each 
processor has valid data. A final merging within PYRAMID allows GeoFEST to 
write a single result file with every node and element represented correctly and 
uniquely. 
Figure 5 shows how time is spent on four processors (stacked vertically) during 
the Conjugate Gradient iterations.  Two iterations are shown, with blank (black) 
areas indicating the domination of numerical calculation.  Red shows the 
“WAITALL” state that results when some processors finish local operations 
earlier than others and the matrix-vector product is combined across processors 
that have adjacent partition information (arrows show communication among 
these partition-adjacent processors). Violet indicates the “ALLREDUCE” function 
of parallel communication that is required to globally combine parts of a vector 
dot product. 
Beyond the interest in seeing the fingerprint of a parallel conjugate gradient 
operation, this image shows the dominance of computation over communication 
time (black >> colors), and the acceptable (but not perfect) load balance of the 
partitioned work. 
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Figure 5: GeoFEST: Fine-detail image of the portion of a GeoFEST run that represents most of 
the computer time, indicating good parallel performance. Four processors are represented along 
the vertical axis, and time is represented along the horizontal axis (a 50 millisecond time clip is 
shown above).  Two iterations of the Conjugate Gradient algorithm, of the thousands of iterations 
making up this simulation, are shown. Three features indicate this algorithm will scale to very 
large problems: 1) The computational load (thin horizontal turquoise line on black background) is 
about the same for each processor. 2) The time spent in synchronization and communication (red 
and violet) is a small fraction of the total. The white arrows indicate the inter-processor 
communication paths among processors where such communication occurs only as needed. 
(This explains why some processors spend more time in synchronization than others even though 
the fraction of time is small.) 3) (not visible in this plot) the fraction of time spent in communication 
does not grow when problem size grows proportional to the number of processors used. 
 

Documentation 

The GeoFEST users guide can be found at  
http://www-aig.jpl.nasa.gov/public/dus/quakesim/GeoFEST_User_Guide.pdf 
 

The GeoFEST code and validation case may be downloaded from: 
http://www.openchannelsoftware.org/projects/GeoFEST 
(follow the "GET IT!" link).   

GeoFEST
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Two files should be downloaded:  

• the "GeoFEST User's Guide" (a pdf file, GeoFEST_par_5P.pdf) and   
• the "GeoFest 4.3p" (a compressed tar file, GeoFEST-4.3p.tgz). 

Another helpful link from the download area is "GeoFEST example" in the left 
margin under "Additional resources."  This link produces an html interactive guide 
to a simple GeoFEST input file, which illuminates the input format for GeoFEST. 

The User's Guide covers the following.  The Introduction describes the use of the 
finite element method for stress and deformation simulation for models of 
earthquake faults that include many of the complexities of crust and mantle 
materials. The Features section describes the kinds of physics and boundaries 
currently supported in GeoFEST. The Theory of Operation section covers the 
mathematical and computational basis of the GeoFEST simulations, including the 
mathematics of viscoelastic mechanics, the finite element formulation, the implicit 
time-stepping scheme, the split-node implementation for faults, and the basis of 
parallel computation. The Input/Output section describes the formats and 
meanings of the parts of the relevant files. The section titled Running GeoFEST 
includes compilation details and parallel execution. There is an annotated sample 
2D input file (this corresponds to the "GeoFEST example" interactive link from 
the GeoFEST Open Channel page, mentioned above). Finally there are two 
appendices.  The first provides flow charts describing the basic organization of 
the GeoFEST code at the source level, including how GeoFEST links Pyramid 
calls for parallel operation. The second describes all GeoFEST functional 
routines, organized by source file. 

The compressed file “GeoFEST-4.3p.tgz” may be unpacked using "tar xzf 
GeoFEST-4.3p.tgz" (on UNIX systems) or the equivalent.  This creates a 
directory GeoFEST-4.3p which contains subdirectories geofest, MeshGen, 
Pyramid, and a text guide "README."  Follow the directions in “README” to 
complete the download and configure the GeoFEST compilation for your 
machine. One should note that additional libraries are necessary (Pyramid and 
ParMetis, both of which are freely distributed at the links listed in “README”), 
and a soft link must be made to configure GeoFEST with Pyramid.  (The entire 
process should take just a few minutes).  Note that several example files named 
“Makefile.*” are given in the geofest directory to support various systems and 
compilers.  These may be used as examples for systems not yet supported 
(usually new compilers or parallel systems are a matter of choosing appropriate 
compiler flags and incorporating these into the make system). 

The MeshGen directory contains a separate sequential program.  In particular 
one will find FORTRAN 90 source GEN_GeoFEST.f90 and a Makefile with 
support for several FORTRAN 90  compilers. Successful compilation will result in 
an executable named "meshgen".  It generates additional connectivity 
information from a provided mesh file, and this information is necessary for 
running Pyramid-enabled parallel GeoFEST. The MeshGen program must be run 



Milestone F – First Code Improvement 

January 9, 2004 JPL Task Order 10650 Page 23 of 30 

on the GeoFEST input file to create a second file (usually with matching prefix to 
the GeoFEST file and with suffix ".jpl") containing additional mesh information.  
Then both files are used in a subsequent parallel GeoFEST simulation. This use 
is described in the subsection "Running the GeoFEST parallel version" in the 
User's Guide, repeated here for convenience: 

"Running the parallel version of GeoFEST is very similar to the 
sequential version, with two main differences. The first is that a .jpl 
file is required in addition to the regular GeoFEST input file in order 
for the parallel version to successfully execute. This file includes 
auxiliary geometry data needed by Pyramid to partition the mesh 
into subdomains. The second is that the output directory path must 
be specified if the user does not want the output to be written in the 
./ directory (which is the default).  

“One additional step must be taken with the input for the parallel 
version. The user will use the meshgen program to convert the 
regular GeoFEST input into an input file that the parallel code can 
use (with the .jpl extension). To invoke this program the user simply 
enters "meshgen", and is interactively prompted to enter the input 
filename. (Upon completion, filename gives rise to the new file 
“filename.jpl.”)" 

The Pyramid directory is empty, and is provided for creating the necessary soft 
links for the Pyramid library (see "README" in the geofest directory). 

Under the geofest directory is a subdirectory validation. The "README" file 
there describes using the meshgen program followed by GeoFEST, followed by a 
script "summa.pl" that writes a summary of the generated output file, allowing the 
user to check the correctness of the locally built system. The simulation uses the 
local file test.dat, which causes GeoFEST to perform ten time steps on the 
Landers three-fault geometry meshed with about 350,000 elements.  It takes a 
few minutes to run. 

Scaling Analysis 

GeoFEST processing for the benchmark case naturally divides into three phases:  
• Input, including reading the mesh file and creating the mesh partition data 

for each processor;  
• Elastic, where the initial equilibrium state is computed;  
• and Viscoelastic evolution, where a sequence of time steps follow the 

relaxation of shear stresses in viscous material.    
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Figure 6 shows where time is spent for the milestone case (64 processors, 1.4 
million elements, 1,000 time steps)2. The preponderance of time is taken up by 
the viscoelastic time step portion of the code.  It is clear that unless many more 
processors are used (or many fewer time steps of simulation), the scaling of the 
viscoelastic steps determines the time one may expect for a simulation to 
complete. 
 

 

 
A single Viscoelastic time step consists of construction of a stiffness matrix (and 
right-hand side), followed by solution of this matrix by the parallel conjugate 
gradient technique (many iterative steps).  So the Viscoelastic segment of Figure 
6 represents 1,000 time steps, each consisting of roughly 200 iterations of the 
sparse solver. One iterative step consists chiefly of a sparse distributed matrix 
vector multiply and three distributed vector dot products (plus some scalar-vector 
operations that may be neglected).  In Figure 5, the portions represented by 

                                      
2 For 8 of the 1,000 time steps, a snap-shot of full displacement data was captured to a file (as 
wad done in the baseline case for Milestone E). 

Figure 6: Fraction of total wallclock time for each phase of the simulation (Input, Elastic 
initial solution, and the Viscoelastic 1000 time steps) for the 1.4 million finite element 
Landers mesh on 64 processors of Thunderhead. 

GeoFEST
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turquoise lines on black are the local operations for the sparse matrix-vector 
product (the finite element domain has been partitioned among the processors in 
contiguous pieces).  The red bars indicate synchronization and combining of the 
solutions where nodes are shared among adjacent processors.  The violet 
represents the synchronization and communication that combines local dot 
products into full values across all processors. 
The operations required for construction of the stiffness matrix are small.  If we 
represent the number of elements as Nelts, and number of iterations as Niters, 
stiffness construction operations number:  

~3500*Nelts = ~5 billion for the Nelts = 1.4 million 
compared to the operations required for a  

Niters = ~200 solution, 
which has operation count  

~300* Niters *300* Nelts = ~80 billion. 

 
We show in Table 3 the time for completing the time step portion for several short 
(5 time step) runs of varying size, on Thunderhead.  Problem sizes were 
constructed to approximate a constant number of elements in each processor for 
4, 16, and 64 processors.  Figure 7 shows the speed of solution for these cases: 
"work" is taken to be the operations involved in the iterative steps.  This plot 
proves communication overhead is not growing faster than computational time as 
we scale the problem size with number of processors. The result is excellent 
scaling.  Problems with > 4,000 elements per processor see negligible parallel 

Table 3: Table 3 shows the problem sizes and run times of GeoFEST (for the viscoelastic 
simulation phase) on Thunderhead using different numbers of processors.  In order to make 
this scaling study, the milestone problem was reduced to 5 time steps (rather than 1,000) 

Number 
Processors

Number 
Elements

Viscoelastic 
Ops

Wallclock (s)
Operations/ 
wallclock (s)

4 82384 2.03E+12 2821.2 7.20E+08
16 82384 2.03E+12 738.9 2.75E+09
64 82384 2.03E+12 252.3 8.05E+09

16 3.53E+05 1.38E+13 4912.7 2.82E+09
64 3.53E+05 1.38E+13 1229.7 1.12E+10

64 1.40E+06 8.11E+13 7247.6 1.12E+10

Data for Scaling Runs for GeoFEST
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overhead, and even smaller problems show substantial speed up with many 
processors. 

 
Figure 7: GeoFEST: Scaling of work (on linear scales) in GeoFEST time-step function with 
number of processors on three sizes of problems (on Thunderhead cluster computer, GSFC). 
Blue indicates ideal scaling (from 4 processors). Expressing work in operations/wallclock time 
allows comparison of sizes in a single plot.    
 
Figure 7 demonstrates that the GeoFEST scaling (on the dominating time-
stepping loop) is excellent.  Sufficiently large problems (353,000 and especially 
1.4 million elements shown here) have trivial parallel overhead on 64 processors. 
More complete scaling analysis considers the time for problem set-up, elastic 
solution, and writing results to files.  Benchmark-type problems with 1,000 time 
steps are dominated by the scaling behavior shown above, for the example 
problem (1.4 Million elements, 64 processors). 

GeoFEST
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Scientific and Computational Significance 

The baseline problem was modeled after the Northridge earthquake (single thrust 
fault).  Analysis of individual earthquake events with attention to their geographic 
settings is a long-term, important area of simulation and research.  But the ability 
to solve domains with millions of elements implies we can simulate regions with 
multiple faults, such as the Los Angeles basin.  Interactions among slipping faults 
and possible emergent structures from these nonlinear interactions appears to be 
the next advance in forecasting earthquake risk.  This is a new and promising 
area for simulation, data comparison and testing of concepts.  Many kinds of 
simulation codes are beginning to be employed for this new kind of work across 
the earthquake community, but a finite element code has close to the greatest 
degree of flexibility in including the effects of realistic structures in the Earth in a 
heterogeneous domain.  We expect this improved GeoFEST will have unique 
value in validating these other simulations and determining when other multiple-
fault models are leaving out too many material effects. 
Computationally, we have demonstrated efficient parallel Conjugate Gradient 
solutions for 3-D faulted-system finite elements, and linked our method with the 
PYRAMID library.  The parallel Conjugate Gradient is no surprise, as it has been 
demonstrated in other domains of physics.  But a freely-available source code for 
faulted domains will be helpful to the US simulation effort.  Linking with 
PYRAMID is a convenient way to handle issues of partitioning and 
communication.  More important, it is a first step to using the PYRAMID functions 
for parallel adaptive mesh refinement.  Adaptive mesh refinement is essential to 
attaining high-quality solutions to problems with widely varying stress intensities 
in three dimensions.  Parallel mesh refinement has the additional advantage of 
solving problems with size commensurate with the memory space of massively 
parallel computers without handling the associated mesh files with solid meshing 
programs, which are nearly all written for sequential machines. A domain can be 
described and meshed at a relatively low mesh density, imported to the parallel 
system, and then key locations in the mesh can be refined to the degree needed, 
expanding the number of elements by large factors (possibly hundreds or more). 
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Simulation details 

The GeoFEST code and milestone input file are available on the Goddard Space 
Flight Center machine Thunderhead.  Building the code on Thunderhead is 
accomplished by following these steps: 
Note: Use the INTEL compiler by typing "mpi_env -p intel" 

 Get the code from ~nortonc/Milestone/GeoFEST.tgz 
 "tar xvzf GeoFEST.tgz" in your home directory ~/ 
 "tcsh" to use tcsh 
 cd ~/GeoFEST/Pyramid-3D/Pyramid-3D/ParMetis/ and type "make" 
 cd ~/GeoFEST/Pyramid-3D/ and type "make -f Intel" 
 cd ~/GeoFEST/geofest/ and type "make -f Intel" 
 type "exit" to leave tcsh 

 
This results in an executable program called GeoFEST in ~/GeoFEST/geofest. 
 
Follow these steps to run the code on Thunderhead. 
 Start LACE Task manager with "ltmsuper" 
 Move executable to your run directory 

cp ~/GeoFEST/geofest/GeoFEST ~/rhome/GeoFEST/geofest/GeoFEST 

 Setup input (input.dat and input.dat.jpl for 4, 16 and 64 processors) 
cd ~/rhome/GeoFEST/geofest/ 

ln -s /data1/nortonc/Quakesim/GeoFEST/geofest/Visuals/LandersGr4.dat input.dat 
ln -s /data1/nortonc/Quakesim/GeoFEST/geofest/Visuals/LandersGap4.dat.jpl input.dat.jpl 

The 16 processors case files are LandersGr16.dat and 
LandersGap16.dat.jpl 
The 64 processors case files are LandersGr64.dat and 
LandersGap64.dat.jpl 

 Request processors and run the code 
 cd ~/GeoFEST/geofest/ 

 ltmbegin -n 4 -m 120 

 ltmpi -p 1 GeoFEST input.dat /data1/<your loginid>/<output directory> 

          OR 
ltmpi -p 1 GeoFEST input.dat /data1/<your loginid>/<output directory> >& /data1/<your 
loginid>/OUT.log 

Note: -n means number of processors 
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                    -m means number of minutes requested 
          -p 1 means use one CPU per node (rather than 2 CPUs per node 

which is the default) 
                   For the16 processor case use -n 16 -m 300 
                   For the 64 processors case use -n 64 -m 360 
 
Follow these steps to interpret the results. 
 When the code runs, some welcome and diagnostic messages will be 

printed to the screen.   
 Visualization and the conjugate gradient history files will be written in 

/data1/<your loginid>/<output directory>.   
 For scalability timings, capture ("grep -i pyramid OUT.log") the output that 

looks like this (the bracketed items are explanatory and the data will be on 
the screen and also in OUT.log if you chose to save it as suggested 
above): 

 
        PYRAMID Current Time:  xxxx.xx [A. Loading Data Start] 
        PYRAMID Current Time:  xxxx.xx [B. Elastic Soln Start] 
        PYRAMID Current Time:  xxxx.xx [C. Time Stepping Start] 
        PYRAMID Current Time:  xxxx.xx [D. Program Termination] 
 
The total runtime will be in step D.   

 In order to examine scalability, the key number is the average time per 
iteration in the time stepping stage. Since the problem size grows 
somewhat proportionally to the number of processors in a scaled fashion 
4, 16, 64, this number should look roughly constant across these problem 
sizes.  

 Compute the average time per iteration as (D-C)/X where X is the total 
number of iterations for each problem size 

  4 PE case: X = 83,256 
16 PE case: X = 132,429 
64 PE case: X = 195,914 

 
As an aside, the baseline case ran in about 13 hours for a problem about the 
same size as the 4 PE case above, so for scalability relative to the baseline case 
the 4 PE case would have to run in less than 3 hours. Our experience has been 
that the 4 PE case can run in 1 hour (dual cpu mode) or less (single cpu mode). 
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Thunderhead is described at: 
http://newton.gsfc.nasa.gov/thunderhead/index.htm.  Particulars relevant to this 
run (current as of November 2003) are:  

Thunderhead is a 512-processor Commodity Cluster located at 
NASA/Goddard Space Flight Center.  It features 512 2.4Ghz Pentium 4 
Xeons, 256Gb DDR memory, 20Tb disk space and 2.2Gpbs myrinet fiber 
interconnect. 
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